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Abstract

In this paper the vibrational behaviour of a cracked cantilever beam carrying end mass and rotary inertia
is investigated. The transverse and axial vibrations of the beam are coupled through the crack model. The
values of the ratio between the cracked and uncracked beam natural frequencies, the frequency ratio, are
examined and are shown to follow well-defined trends with respect to the crack parameters and end mass
and rotary inertia. However, the coupling between the transverse and axial vibrations is shown to be weak
for the first two modes for moderate values of crack depth ratio. High crack depth ratios appear to increase
the coupling effects. Low aspect ratios are expected to show strong coupling effects and further
investigation is recommended using Timoshenko beam theory.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Beams are one of the most commonly used structural elements in numerous engineering
applications and thus experience a wide variety of static and dynamic loads. It is well known that
in design one assumes material properties not to vary throughout the presumed life of a beam, but
there are many situations in practice in which these properties would change because of
continuous wear and friction suffered during operation. This occurs in particular when the
component is designed to take loads near or beyond the material yield load [1]. However, even if
the area under damage is too small to endanger the overall structural integrity and reliability, its
influence on the dynamic characteristics could be important.
Considering the crack as a significant form of such damage, its modelling is an important step

in studying the behaviour of damaged structures. Knowing the crack compliance, the beam or
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shaft can be modelled using either Euler–Bernoulli or Timoshenko beam theories. The beam
boundary conditions are used along with the crack compatibility relations to derive the
characteristic equation relating the natural frequency, the crack depth and location with the other
beam properties.
The earliest attempts to identify the stiffness discontinuities in beams date back to 1949, when

the influence of a small slot on the free vibration of a uniform beam was studied by Thompson [2],
although this reduction in area does not truly represent local material damage. The growth or
coalesence of micro-cracks under repeated loading is another case in which a local flexibility is
introduced in [3], which for a beam can be described by way of a local flexibility matrix, the
dimension of which depends on the number of degrees of freedom considered (maximum 6� 6).
Such a matrix was introduced first for beams of rectangular cross-section with transverse surface
cracks by Dimarogonas and Paipeties [4] for five degrees of freedom neglecting torsion. The
influence of an edge crack of a specified size on the vibration of a circular shaft has been studied
by Dimarogonas and Papadopoulos [5]. Chondros et al. [6] and Chondros and Dimarogonas [7]
studied the vibration of cracked beams with simply supported and cantilever boundary
conditions, respectively. The Hu–Washizu–Barr variational formulation was used to develop
the differential equation and the boundary conditions of the cracked beams. They compared the
local flexibility method with the continuous system, the decaying stress field, and the experimental
results of thin slots in place of cracks. The results were all in good agreement. A 2� 2 local
flexibility matrix with the coupling terms have been modelled analytically by Papadopoulos and
Dimarogonas [3]. The prediction of mixed mode crack initiation and propagation direction was
considered by Nobile [8] utilizing the S-theory developed by Sih [9]. The S-theory could be used as
an alternative approach to model the flexibility matrix of single and mixed mode cracks. The
measured vibration amplitude was related to the crack location and depth by Rizos et al. [10], in
which the crack was represented by a bending spring utilizing the approach proposed by
Dimarogonas and Paipeties [4]. An equation of bending motion for Euler–Bernoulli beam
containing pairs of symmetrical open cracks was derived by Christides and Barr [11]. The cracks
were considered to be normal to the beam’s neutral axis and symmetrical about the plane of
bending. An approximate Galerkin solution to model a beam with a pair of cracks symmetrically
located about the neutral axis was developed by Shen and Pierre [12] in which a theory developed
by Christides and Barr [11] was employed. An expression for the natural frequency of a beam
containing two open cracks was developed by Joshi and Madhusudhan [1]. Their expression
predicts the change of natural frequency for the first five natural modes of vibration for a beam
with four different boundary conditions. Analytical expressions and plots relating the crack depth
and location of cracked Timoshenko shaft for the first few natural frequencies of the shaft have
been developed by Rajab and Al-Saleeh [13]. These expressions were obtained by modelling the
crack as bending and shear compliance of equivalent incremental strain energy by using the J-
integral concept from fracture mechanics. It was shown that knowledge of the relative change in
the first three natural frequencies is enough to estimate the crack depth and crack location in the
shaft. The slenderness ratio effect on a cracked beam was investigated by Kikidis and
Papadopoulos [14]. They showed that the slenderness ratio has a significant effect on the coupled
bending and torsional vibration. They compared the behaviour of a model based on Euler–
Bernoulli beam theory and a model based on Timoshenko beam theory. The perturbation method
and finite element method were used by Gudmundson [15,16] to predict the changes in resonance
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frequencies of structural members due to cracks or any geometrical changes. An experimental and
analytical investigation were carried out by Ismail et al. [17] in their study of fatigue crack
identification using vibration testing. They modelled the crack using a combination of torsional
and shear springs. They pointed out that calculations based only on the drop of natural
frequencies of higher modes may lead to an underestimation of the crack severity. An algorithm
was developed by Dado [18] to predict the depth and location of an open transverse crack in a
beam with rectangular cross-section with four different boundary conditions, in which the model
developed by Dimarogonas and Paipeties [4] has been extended. This algorithm requires the
natural frequencies of the first two modes of vibration of the cracked beam to enter tables of
model generated data. A method for modelling transverse vibration of geometrically segmented
slender beams of constant thickness with and without crack exploiting the Frobenius technique
was proposed by Chaudhari et al. [19]. A comparison with a finite element solution was resorted
to and a maximum of 3% error was recorded in predicting the crack location. A finite element
model for a tapered rotating cracked shaft for the modal analysis and dynamic modelling of rotor-
bearing systems was developed by Mohiuddin and Khulief [20]. The formulation of the tapered
rotating cracked shaft included shear deformation and rotary inertia. The coupling between the
axial load and the crack depth of a cracked fixed–fixed beam was studied by Masoud et al. [21]. It
was found that the natural frequency could not be determined by a simple superposition of the
axial load and crack depth effects. The coupling significance was found to be directly proportional
to the crack depth and axial load. The effect of a crack on the dynamic stability of a free–free
Timoshenko beam subjected to a constant or a pulsating follower force was studied by Kim and
Kim [22]. A mathematical model for the crack was introduced in the form of the bending and
shear compliance of equivalent incremental strain energy.
This paper presents a modelling and analysis algorithm for cracked Euler–Bernoulli beams by

considering the coupling between the bending and axial modes of vibration. The beam is a
cantilever with a rectangular cross-section. The algorithm studies the vibrational behaviour of the
cracked beam, and particularly the natural frequency and mode shapes under the effect of added
mass and rotary inertia at the free end. The crack compliance is modelled using the strain energy
release rate relation. Polynomial regression relations are obtained and implemented in modelling
the crack compliance 2� 2 matrix.

2. The cracked beam model

The cracked beam is modelled as two continuous segments that are coupled by the crack
compliance matrix. The equation that governs the longitudinal motion of a uniform elastic beam
segment can be expressed as

EA
@2uðx; tÞ
@x2

� %m
@2uðx; tÞ

@t2
¼ 0 ð1Þ

and the equation that governs the transverse motion of a uniform elastic Euler–Bernoulli beam
segment can be expressed as

EI
@4vðx; tÞ
@x4

þ %m
@2vðx; tÞ

@t2
¼ 0; ð2Þ
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where uðx; tÞ and vðx; tÞ are the axial and transverse displacements of a point along the beam as
shown in Fig. 1. %m is the mass per unit length (kg/m), E is the modulus of elasticity (N/m2), and I
is the area moment of inertia (m4).
Using the method of separation of variables, the solution in the spatial domain for the

governing equations is given as

d2UðxÞ
dx2

þ
o2 %m

EA
UðxÞ ¼ 0 ð3Þ

and

d4VðxÞ
dx4

þ
o2 %m

EI
V ðxÞ ¼ 0: ð4Þ

Let

k2
u ¼

o2 %mL2

EA
; ð5Þ

k4
v ¼

o2 %mL4

EI
; ð6Þ

where L is the total length of the beam and o is known as the natural frequency of the beam.
The general solutions for Eqs. (3) and (4) are

UðxÞ ¼ C1 cosðku %xÞ þ C2 sinðku %xÞ; ð7Þ

V ðxÞ ¼ C3 cosðkv %xÞ þ C4 sinðkv %xÞ þ C5 coshðkv %xÞ þ C6 sinhðkv %xÞ; ð8Þ

where %x ¼ x=L:
Consider the cracked beam model shown in Fig. 2. The spatial domain equation for the

segment 0pxoxc could be written using the forms in Eqs. (7) and (8) as

U1ðxÞ ¼ A1 cosðku %xÞ þ A2 sinðku %xÞ; ð9Þ

V1ðxÞ ¼ A3 cosðkv %xÞ þ A4 sinðkv %xÞ þ A5 coshðkv %xÞ þ A6 sinhðkv %xÞ ð10Þ

and that for the segment xcpxpL is written as

U2ðxÞ ¼ A7 cosðku %xÞ þ A8 sinðku %xÞ; ð11Þ

V2ðxÞ ¼ A9 cosðkv %xÞ þ A10 sinðkv %xÞ þ A11 coshðkv %xÞ þ A12 sinhðkv %xÞ: ð12Þ

( )t,x

( )t,x

F

P

(x,t )v

x( , )tu
X

Y

Fig. 1. Beam under axial and transverse loading.
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The internal axial force P and bending moment M at the crack are expressed as

P

M

( )
¼

k11 k12

k21 k22

" #
U2ðxcÞ � U1ðxcÞ

V 0
2ðxcÞ � V 0

1ðxcÞ

( )
; ð13Þ

where kij are the elements of the stiffness matrix equivalent to the crack. This matrix is derived in
Section 3 of this paper. P and M are given in terms of the beam elastic deflections as

P

M

( )
¼

EAU 0ðxcÞ

EIV 00ðxcÞ

( )
: ð14Þ

Combining Eqs. (13) and (14) provides two equations for relating the coefficients A1–A12. In
addition, the continuity relations at the crack provide the following equations:

U 0
1ðxcÞ ¼ U 0

2ðxcÞ; ð15aÞ

V1ðxcÞ ¼ V2ðxcÞ; ð15bÞ

V 00
1 ðxcÞ ¼ V 00

2 ðxcÞ; ð15cÞ

V 000
1 ðxcÞ ¼ V 000

2 ðxcÞ: ð15dÞ

The boundary conditions for the cantilever beam with a concentrated mass and rotary inertia at
the free end (Fig. 3) are

U1ð0Þ ¼ 0; U 0
2ðLÞ ¼ �

Mrk
2
u

L
U2ðLÞ; ð16aÞ

X

L

c

Je

eM
h

a

Fig. 3. Cantilever beam with concentrated mass and rotary inertia.

cX

X
L

Fig. 2. Two-segment cracked beam model.
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V1ð0Þ ¼ 0; V 000
2 ðLÞ ¼ �

Mrk
4
v

L3
V2ðLÞ; ð16bÞ

V 0
1ð0Þ ¼ 0; V 00

2 ðLÞ ¼
Jrk

4
v

L
V 0

2ðLÞ; ð16cÞ

where Mr is the concentrated mass ratio given by

Mr ¼
Me

%mL
ð17Þ

and Jr is the rotary inertia ratio given by

Jr ¼
Je

%mL3
; ð18Þ

where Me and Je are the concentrated mass and the rotary inertia added at the free end.

3. Crack stiffness matrix

The presence of a transverse through the thickness crack of depth a introduces a local flexibility
matrix, the dimension of which depends on the degrees of freedom considered in the problem. In
the case of axial and bending loads, the matrix is only (2� 2), as each side has two degrees of
freedom where the off-diagonal elements of the matrix are considered as coupling elements in the
flexibility matrix.
The elastic strain energy release rate, G, could be expressed as follows:

G ¼
1� n2

E
ðKIP þ KIMÞ2; ð19Þ

where n is the Poisson ratio, and E is the modulus of elasticity. KIP and KIM are the stress intensity
factors of mode I (the opening of the crack) for axial force P and bending moment M;
respectively. To guarantee the open crack mode, the beam is assumed to be preloaded by its own
weight. The amplitude of vibration is assumed to be well below the crack opening due to
preloading. The stress intensity factors from elementary fracture mechanics are given as

KIP ¼
P

bh
ðpaÞ1=2F1; ð20Þ

KIM ¼
6M

bh2
ðpaÞ1=2F2; ð21Þ

where b and h are the cross-section dimensions and a is the crack depth as shown in Fig. 4.
The functions F1 and F2 are dependent on the crack depth a and are approximated (as proposed

by Ewalds and Wnahil [23]) by

F1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tanðpa=2Þ

pa

r
0:752þ 2:02aþ 0:37ð1:0� sinðpa=2ÞÞ3

cosðpa=2Þ

� �
; ð22Þ

F2 ¼
1:99� að1� aÞð2:15� 3:39aþ 2:7a2Þffiffiffi

p
p

ð1þ 2aÞð1� aÞ3=2
: ð23Þ
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For a rectangular strip with unit width, the local axial, coupled axial and bending, and bending
compliance are defined, respectively, as proposed by Dimarogonas and Papadopoulos [5] by

c011 ¼
@2

@P2

Z a

0

G da; ð24Þ

c012 ¼ c021 ¼
@2

@P@M

Z a

0

G da; ð25Þ

c022 ¼
@2

@M2

Z a

0

G da; ð26Þ

where a is the maximum crack depth as shown in Fig. 4.
Defining the dimensionless parameters %a ¼ a=h and %a ¼ a=h; the compliance coefficients for the

full beam width could be written as

c11 ¼
2ph

A

ð1� n2Þ
E

Z %a

0
%aF2

1 ð%aÞ d%a; ð27Þ

c12 ¼ c21 ¼
ph2

I

ð1� n2Þ
E

Z %a

0
%aF1ð%aÞF2ð%aÞ d%a; ð28Þ

c22 ¼
6ph

I

ð1� n2Þ
E

Z %a

0
%aF2

2 ð%aÞ d%a; ð29Þ

where A ¼ bh and I ¼ bh3=12 are the cross-sectional area and the area moment of inertia.
The integrals in Eqs. (27)–(29) are evaluated numerically using 16 point quadrature formulae.

The results are fitted to polynomial expressions for the three compliance factors using %a as the

a

h

b

Fig. 4. Geometry of the cracked section of the cantilever beam.
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independent variable. The polynomial expressions are found as follows:

c11 ¼
2ph

A

ð1� n2Þ
E

ð0:005777459þ 0:1010004 %a � 4:137205 %a2

þ 35:37731 %a3 � 89:41206 %a4 þ 83:65015 %a5Þ; ð30Þ

c12 ¼
ph2

I

ð1� n2Þ
E

ð0:002143934þ 0:0384199 %a � 1:171652 %a2

þ 12:8375 %a3 � 32:61926 %a4 þ 31:34015 %a5Þ; ð31Þ

c22 ¼
6ph

I

ð1� n2Þ
E

ð0:000537323þ 0:026002454 %a � 0:1846979 %a2

þ 4:526204 %a3 � 11:76326 %a4 þ 11:64832 %a5Þ ð32Þ

in which the correlation coefficients are more than 0.99.
The crack stiffness matrix used in Eq. (13) is defined as

k11 k12

k21 k22

" #
¼

c11 c12

c21 c22

" #�1

ð33Þ

or, k11 ¼ c22=D; k12 ¼ �c12=D; k21 ¼ �c12=D; k22 ¼ c11=D; and D ¼ c11c22 � c12c21; and the
non-dimensional stiffness matrix elements as

%k11 ¼
h

EA
k11; %k12 ¼

k12

EA
and %k22 ¼

h

EI
k22: ð34Þ

4. Frequency ratio evaluation and mode shape determination

The natural frequency of the cracked beam could be evaluated using the crack model and the
beam continuity and boundary conditions. Eqs. (13)–(16) define these relations as a set of 12
homogenous linear simultaneous algebraic equations. These equations could be written in
compact form as

½B	fAg ¼ f0g; ð35Þ

where ½B	 is the coefficient matrix defined in terms of the cracked beam parameters and given in
Appendix A. The vector fAg ¼ ½A1;y;A12	T contains the coefficients used in Eqs. (9)–(12). For
non-trivial values for the vector fAg; Eq. (35) leads to the following characteristic equation:

jBj ¼ 0: ð36Þ

Given all the cracked beam parameters, the only unknown in Eq. (36) is the value of the natural
frequency o: The secant method for numerically finding the roots of a non-linear equation is
implemented. The frequency of the identical uncracked beam is easily obtained by modifying
Eq. (36), where the crack relations are removed and only the equations describing the boundary
conditions are applied resulting in a 6� 6 characteristic matrix.
The mode shapes for the transverse and axial vibration are determined by evaluating the vector

fAg ¼ ½A1;y;A12	T: This is done by setting the value of one of the elements of fAg to 1.0, in this
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case element A12; and then solving for the rest of the elements using Eq. (35) after the required
modifications. From the mode shape analysis, the extent of coupling between transverse and axial
vibration is determined. The results are discussed in the following section.

5. Results and discussion

The frequency ratio is evaluated for nine different sets of crack parameters and a series of end
mass and rotary inertia ratios for the first and second modes of vibration. Figs. 5 and 6 present the
results of a crack located near the root of the beam with a location ratio of 0.1. For this crack
location, two different depth ratios: 0.1 and 0.7 are considered. For each of these crack
parameters, the frequency ratio ro is plotted as a function of rotary inertia ratio for the following
four end mass ratios: 0.25, 0.50, 0.75 and 1.00. The frequency ratio is defined as

ro ¼
oðcrackedÞ
oðuncrackedÞ

: ð37Þ

Figs. 7–10 present the same results for the crack location ratios 0.5 and 0.9, respectively.
Figs. 11 and 12 show the mode shapes for the transverse and axial vibration for the first two
modes for a crack location ratio of 0.1 and a crack depth ratio of 0.4 with and without end mass
and rotary inertia. Figs. 13 and 14 show the same for crack location ratio of 0.5. Table 1 lists the
dimensionless frequency parameter kv; defined by Eq. (6), for different parameter ratio
combinations and compares it to its corresponding value for the uncoupled transverse vibration
case.
Upon examining Figs. 5–14 and Table 1, the following observations could be stated:

1. The frequency ratio is more sensitive to the depth ratio than to the location ratio.
2. The addition of rotary inertia increases the frequency ratios of the first mode for crack

locations in the vicinity of the root. However, the frequency ratios for the second mode
experienced a different trend as it tends to have high values at low rotary inertia ratio and low
values at high rotary inertia ratios.

3. For cracks located in the mid-span and near the free end, the addition of rotary inertia resulted
in low frequency ratios.

4. The effect of the concentrated mass on the frequency ratio is opposite in nature to that of the
rotary inertia regardless to the crack location and depth ratios or the vibrational mode number.

5. An intersection point exists for all cases at which the frequency ratio is the same for a given
rotary inertia ratio regardless to the mass ratio.

6. The coupling between the transverse and axial vibrations is weak for the first two modes as
shown in the mode shape plots. Even with end mass and rotary inertia the coupling remains
weak. This is true as long as that the aspect ratio used is 10 or more. However, the coupling
effect is apparently stronger for high values of crack depth ratio as observed when comparing
Figs. 13 and 14. Stronger coupling may exist for lower values of aspect ratio, but for these cases
the Timoshenko beam theory should be applied for accurate modelling.

7. The weak coupling is manifested in the results of the frequency parameter kv where the values
for coupled and uncoupled cases are practically the same as seen in Table 1.
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Fig. 5. Rotating inertia ratio versus the frequency ratio with crack location ratio %xc ¼ 0:1 and depth ratio %a ¼ 0:1 for

different mass ratios Mr: (a) first mode with different mass ratios 0.25, 0.50, . . 0.75, y..1.00. (b) Second mode

with different mass ratios 0.25, 0.50, . . 0.75, y..1.00.
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Fig. 6. Rotating inertia ratio versus the frequency ratio with crack location ratio %xc ¼ 0:1 and depth ratio %a ¼ 0:7 for

different mass ratio Mr: (a) first mode with different mass ratios 0.25, 0.50, . . 0.75, y..1.00. (b) Second mode
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Fig. 7. Rotating inertia ratio versus the frequency ratio with crack location ratio %xc ¼ 0:5 and depth ratio %a ¼ 0:1 for

different mass ratio Mr: (a) first mode with different mass ratios 0.25, 0.50, . . 0.75, y..1.00. (b) Second mode
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Fig. 8. Rotating inertia ratio versus the frequency ratio with crack location ratio %xc ¼ 0:5 and depth ratio %a ¼ 0:7 for

different mass ratio Mr: (a) first mode with different mass ratios 0.25, 0.50, . . 0.75, y..1.00. (b) Second mode
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Fig. 9. Rotating inertia ratio versus the frequency ratio with crack location ratio %xc ¼ 0:9 and depth ratio %a ¼ 0:1 for
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with different mass ratios 0.25, 0.50, . . 0.75, y..1.00.
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Fig. 11. Transverse and axial mode shapes with crack location ratio %xc ¼ 0:1 and depth ratio %a ¼ 0:4 for the first two

modes: (a) first mode, Mr ¼ 0; Jr ¼ 0; . . axial cracked, transverse uncracked, transverse cracked. (b) Second

mode, Mr ¼ 0; Jr ¼ 0; . . axial cracked, transverse uncracked, transverse cracked.
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Fig. 12. Transverse and axial mode shapes with crack location ratio %xc ¼ 0:1 and depth ratio %a ¼ 0:4 for the first two

modes: (a) first mode, Mr ¼ 1:0; Jr ¼ 0:3; . . axial cracked, transverse uncracked, transverse cracked. (b)

Second mode, Mr ¼ 1:0; Jr ¼ 0:3; . . axial cracked, transverse uncracked, transverse cracked.
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Fig. 13. Transverse and axial mode shapes with crack location ratio %xc ¼ 0:5 and depth ratio %a ¼ 0:4 for the first two

modes: (a) first mode, Mr ¼ 0; Jr ¼ 0; . . axial cracked, transverse uncracked, transverse cracked. (b) Second

mode, Mr ¼ 0; Jr ¼ 0; . . axial cracked, transverse uncracked, transverse cracked.
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Fig. 14. Transverse and axial mode shapes with crack location ratio %xc ¼ 0:5 and depth ratio %a ¼ 0:4 for the first two

modes: (a) first mode, Mr ¼ 1:0; Jr ¼ 0:3; . . axial cracked, transverse uncracked, transverse cracked. (b)

Second mode, Mr ¼ 1:0; Jr ¼ 0:3; . . axial cracked, transverse uncracked, transverse cracked.
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6. Conclusions

An investigation of the vibratory behaviour has been conducted for a cracked cantilever beam.
The analysis procedure coupled the transverse and axial vibration through the crack model. The
effects of end mass and rotary inertia are studied for different crack conditions. It is seen that the
frequency ratio follows predictable trends in relation to the crack parameters and end mass and
rotary inertia. The coupling effects between the transverse and axial vibrations observed to be
weak for the first two modes. It is recommended that this investigation should be followed by
applying Timoshenko beam theory to further investigate the coupling effects for short thick
beams.

Appendix A

The characteristics equation jBj ¼ 0:
The non-zero elements of ½B	 matrix are:

B1;1 ¼ 1;B2;3 ¼ 1;B2;5 ¼ 1 B10;3 ¼ �sinðkv %xcÞ
B3;4 ¼ 1;B3;6 ¼ 1 B10;4 ¼ cosðkv %xcÞ
B4;7 ¼ sinðkuÞ þ Mrku cosðkuÞ B10;5 ¼ �sinhðkv %xcÞ
B4;8 ¼ �cosðkuÞ þ Mrku sinðkuÞ B10;6 ¼ �coshðkv %xcÞ
B5;9 ¼ sinðkvÞ þ Mrkv cosðkvÞ B10;9 ¼ sinðkv %xcÞ
B5;10 ¼ �cosðkvÞ þ Mrkv sinðkvÞ B10;10 ¼ �cosðkv %xcÞ
B5;11 ¼ sinhðkvÞ þ Mrkv coshðkvÞ B10;11 ¼ sinhðkv %xcÞ
B5;12 ¼ coshðkvÞ þ Mrkv sinhðkvÞ B10;12 ¼ coshðkv %xcÞ
B6;9 ¼ �cosðkvÞ þ Jrk

3
v sinðkvÞ B11;1 ¼ �ku sinðku %xcÞ þ %k11ðL=hÞ cosðku %xcÞ

B6;10 ¼ �sinðkvÞ þ Jrk
3
v cosðkvÞ B11;2 ¼ ku cosðku %xcÞ þ %k11ðL=hÞsinðku %xcÞ

B6;11 ¼ coshðkvÞ � Jrk
3
v sinhðkvÞ B11;3 ¼ �kv

%k12 sinðkv %xcÞ
B6;12 ¼ sinhðkvÞ � Jrk

3
v coshðkvÞ B11;4 ¼ kv

%k12 cosðkv %xcÞ
B7;1 ¼ �sinðku %xcÞ B11;5 ¼ kv

%k12 sinhðkv %xcÞ
B7;2 ¼ cosðku %xcÞ B11;6 ¼ kv

%k12 coshðkv %xcÞ

Table 1

Frequency parameter for different crack parameters and end mass and rotary inertia

Crack

location

Crack

depth

End mass=0.0, Rotary inertia=0.0 End mass=1.0, Rotary inertia=0.3

First mode Second mode First mode Second mode

Coupled Uncoupled Coupled Uncoupled Coupled Uncoupled Coupled Uncoupled

0.1 0.4 1.7067 1.7068 4.5644 4.5682 1.0381 1.0381 2.0177 2.0178

0.7 1.3123 1.3132 4.3864 4.4172 0.83385 0.83402 1.9251 1.9264

0.5 0.4 1.8432 1.8432 4.3968 4.4018 1.0745 1.0745 2.0696 2.0697

0.7 1.6921 1.6929 3.7030 3.7526 0.94022 0.94039 2.0387 2.0394

0.9 0.4 1.8750 1.8750 4.6879 4.6879 1.0974 1.0974 1.9278 1.9279

0.7 1.8745 1.8745 4.6454 4.6487 1.0303 1.0304 1.5949 1.5966
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B7;7 ¼ sinðku %xcÞ B11;7 ¼ � %k11ðL=hÞ cosðku %xcÞ
B7;8 ¼ �cosðku %xcÞ B11;8 ¼ � %k11ðL=hÞ sinðku %xcÞ
B8;3 ¼ cosðkv %xcÞ B11;9 ¼ kv

%k12 sinðkv %xcÞ
B8;4 ¼ sinðkv %xcÞ B11;10 ¼ �kv

%k12 cosðkv %xcÞ
B8;5 ¼ coshðkv %xcÞ B11;11 ¼ �kv

%k12 sinhðkv %xcÞ
B8;6 ¼ sinhðkv %xcÞ B11;12 ¼ �kv

%k12 coshðkv %xcÞ
B8;9 ¼ �cosðkv %xcÞ B12;1 ¼ %k12 cosðku %xcÞ
B8;10 ¼ �sinðkv %xcÞ B12;2 ¼ %k12 sinðku %xcÞ
B8;11 ¼ �coshðkv %xcÞ B12;3 ¼ �k2

v cosðkv %xcÞ � kv
%k22ðL=hÞsinðkv %xcÞ

B8;12 ¼ �sinhðkv %xcÞ B12;4 ¼ �k2
v sinðkv %xcÞ þ kv

%k22ðL=hÞcosðkv %xcÞ
B9;3 ¼ cosðkv %xcÞ B12;5 ¼ k2

v coshðkv %xcÞ þ kv
%k22ðL=hÞsinhðkv %xcÞ

B9;4 ¼ sinðkv %xcÞ B12;6 ¼ k2
v sinhðkv %xcÞ þ kv

%k22ðL=hÞcoshðkv %xcÞ
B9;5 ¼ �coshðkv %xcÞ B12;7 ¼ � %k21ðL=hÞ2 cosðku %xcÞ
B9;6 ¼ �sinhðkv %xcÞ B12;8 ¼ � %k21ðL=hÞ2 sinðku %xcÞ
B9;9 ¼ �cosðkv %xcÞ B12;9 ¼ kv

%k22ðL=hÞ sinðkv %xcÞ
B9;10 ¼ �sinðkv %xcÞ B12;10 ¼ �kv

%k22ðL=hÞ cosðkv %xcÞ
B9;11 ¼ coshðkv %xcÞ B12;11 ¼ �kv

%k22ðL=hÞ sinhðkv %xcÞ
B9;12 ¼ sinhðkv %xcÞ B12;12 ¼ �kv

%k22ðL=hÞ coshðkv %xcÞ
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